Chapter 1 : Rational Numbers

1. Fill in the blanks :
(i) $\left(\frac{3}{-5}+\frac{1}{-8}\right)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{3}{-5}+\left(\frac{4}{-7}+\frac{1}{-8}\right)$.
(ii)
$\ldots . ~ \div\left(-\frac{11}{13}\right)=1$.
(iii) The two rational numbers whose absolute value is $\frac{1}{3}$ are \qquad
(iv) A rational number between x and y is \qquad
(v) If $a=\frac{2}{5}$ and $b=\frac{-1}{3}$, then the value of $(a+b) \div(a-b)$ is \qquad
(vi) $\left(\frac{3}{7}+\frac{1}{11}\right)+\left(\frac{-5}{13}\right)=$ \qquad
(vii) $\frac{-4}{3} \times\left[\frac{1}{3}+\left(\frac{-5}{7}\right)\right]=\left(\frac{-4}{3} \times \ldots \ldots \ldots \ldots.\right)+\left(\frac{-4}{3} \times \ldots \ldots \ldots \ldots.\right)$.
(viii) The product of two rational numbers is always a \qquad
(ix) The reciprocal of -9 is \qquad ..
(x) The rational number lying between -4 and -3 is \qquad
2. Match the following :

Column A

Column B

(i) $\left(\frac{-4}{5}\right)+\left(\frac{-2}{3}\right)$ is a rational number.
(a) Existence of multiplicative inverse
(ii) $\left(\frac{-11}{12}\right)+\left(\frac{-3}{4}\right)=\left(\frac{-3}{4}\right)+\left(\frac{-11}{12}\right)$
(b) Associative property
(iii) $\frac{-2}{5} \times\left(\frac{5}{-2}\right)=\frac{5}{-2} \times\left(\frac{-2}{5}\right)=1$
(c) Closure property over addition
(iv) $\left(\frac{-3}{7} \times \frac{1}{2}\right) \times\left(\frac{-5}{2}\right)=\frac{-3}{7} \times\left(\frac{1}{2} \times \frac{-5}{2}\right)$
(d) Distributive law of multiplication over addition
(v) $\frac{-1}{2} \times\left\{\frac{-3}{4}+\left(\frac{-1}{3}\right)\right\}=\left\{\frac{-1}{2} \times\left(\frac{-3}{4}\right)\right\}+\left\{\frac{-1}{2} \times\left(\frac{-1}{3}\right)\right\}$
(e) Distributive law of multiplication over subtraction
(f) Commutative property.

