Ld. Bentinck School
 PRE-BOARD EXAMINATION, SESSION (2023-24)

\qquad

General Instruction:-

i) This question paper contains 38 questions. All questions are compulsory.
ii) Question paper is divided into FIVE sections - Section A, B, C, D \& E.
iii) In section A, question number 1 to 18 are multiple-choice questions (MCQs) and question number 19 and 20 are assertion reason-based questions of 1 mark each.
iv) In section B, question number 21 to 25 are very short answer type questions of 2 marks each.
v) In section C, question number 26 to 31 are short answer type questions carrying 3 marks each.
vi) In section D, question number 32 to 35 are long answer type questions carrying 5 marks each.
vii) In section E, question number 36 to 38 are case based integrated units of assessment questions carrying 4 marks each. Internal choice is provided in 2 marks question in each case study.
viii) There is no overall choice. However, an internal choice has been provided in 2 questions in section $B, 2$ questions in section $C, 2$ questions in section D and 3 questions in section E.
ix) Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.
$x) \quad$ Use of calculator is not allowed.

SECTION-:A

1. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3}$, where x, y are prime numbers, then the result obtained by dividing the product of the positive integers by the $\operatorname{LCM}(a, b)$ is
a) $x y$
b) $x y^{2}$
c) $x^{3} y^{3}$
d) $x^{2} y^{2}$
2. The given linear polynomial $y=f(x)$ has

a) 2 zeroes
b) 1 zero and the zero is ' 3 '
c) 1 zero and the zero is ' 4 '
d) no zero
3. The lines representing the given pair of linear equations are non-intersecting. Which of the following statements is true?

a) $\underline{1}=\underline{1}=\underline{1}$
b) $\underline{1}=\underline{1} \neq \underline{1}$
c) $\underline{1} \neq \underline{1}=\underline{1}$
d) $1 \neq 1 \neq 1 \quad 7$. point (x, y) is at a distance of 5 units from the
4. The nature of roots of the quadratic equation $9 x^{2}-6 x-2=0$ is:
a) No real roots
b) 2 equal real roots
c) 2 distinct real roots
d) more than 2
Real roots.
5. Two Aps have the same common difference. The first term of one of these is -1 and that of the other is -8 . The difference between their $4^{\text {th }}$ term is: origin. How many such points lie in the third quadrant?
a) 0
b) 1
a) 1
b) -7
c) 7
d) 9
6. What is the ratio in which the line segment joining $(2,-3)$ and $(5,6)$ is divided by x-axis?
a) $1: 2$
b) $2: 1$
c) $2: 5$
d) $5: 2$
$\mathrm{DE}=\mathrm{x}, \mathrm{BE}=\mathrm{b}$ and $\mathrm{EC}=\mathrm{c}$. Then x expressed in terms of a, b and c is:

a) -
b)
c) -
d)
7. If O is centre of a circle and chord PQ makes an angle 50° with the tangent PR at the point of contact P , then the angle subtended by the chord at the centre is:

a) 130^{0}
b) 100^{0}
c) 50°
d) 30°
8. A quadrilateral PQRS is drawn to circumscribe a circle. If $\mathrm{PQ}=12 \mathrm{~cm}, \mathrm{QR}=15 \mathrm{~cm}$ and $\mathrm{RS}=$ 14 cm , find the length of SP is:
a) 15 cm
b) 14 cm
c) 12 cm
d) 11 cm
9. Given that $\sin =$, find cos is:
a) $=$
b) -
c) \square
d) $=$
10. $(\sec A+\tan A)(1-\sin A)$ equals:
a) $\operatorname{Sec} \mathrm{A}$
b) $\sin A$
c) $\operatorname{cosec} A$
d) $\cos \mathrm{A}$
11. If a pole 6 m high casts a shadow $2,3^{-} \mathrm{m}$ long on the ground, then the sun's elevation is:
a) 60°
b) 45°
c) 30°
d) 90°
12. If the perimeter and the area of a circle are numerically equal, then the radius of the circle is:
a) 2 units
b) units
c) 4 units
d) 7 units
13. It is proposed to build a new circular park equal in area to the sum of areas of two circular parks of diameters 16 m and 12 m in a locality. The radius of the new park is:
a) 10 m
b) 15 m
c) 20 m
d) 24 m
14. There is a complete shaded square board of side 2 a units circumscribing a shaded circle. Jayadev is asked to keep a dot on the above said board. The probability that he keeps the dot on the complete shaded region.
a) -
b) -
c) -
d)-
15. 2 cards of hearts and 4 cards of spades are missing from a pack of 52 cards. A card is drawn at random from the remaining pack. What is the probability of getting a black card?
a) -
b) -
c) -
d) -
16.
17. The upper limit of the modal class of the given distribution is :

Height (in $\mathrm{cm})$	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165
Number of girls	4	11	29	40	46	51

a) 165
b) 160
c) 155
d) 150

Direction: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option
19. Statement A (assertion): Total surface area of the top is the sum of the curved surface area of the hemisphere and the curved surface area of the cone.
Statement R (Reason) : Top is obtained by joining the plane surfaces of the hemisphere and cone together.
a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A).
c) Assertion (A) is true but reason (R) is false.
d) Assertion (A) is false but reason (R) is true.
20. Statement A (assertion): $-5,-\frac{5}{2}, 0, \frac{5}{2}, \ldots \ldots \ldots \ldots$ is in arithmetic progression.

Statement R (reason): The terms of an Arithmetic Progression cannot have both positive and negative rational numbers.
a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A).
c) Assertion (A) is true but reason (R) is false.
d) Assertion (A) is false but reason (R) is true.

SECTLON-B
Show that $5+2 \quad 7$ is an irrational number, where $\quad 7$ is given to be an irrational number 2. In the adjoining figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$. Prove that

23. In the figure below, a circle with centre O is inscribed inside $\triangle \mathrm{LMN}$. A and B are the points of tangency. Find $\angle A N B$. Show your Steps.
24. A) If $\cos (A+2 B)=0,0^{0} \leq(A+2 B) \leq 90^{\circ}$ and $\cos (B-A)=\sqrt{ } 2^{\frac{3}{-}}, 0^{0} \leq(B-A) \leq 90^{0}$, then find
$\operatorname{cosec}(2 \mathrm{~A}+\mathrm{B})$. Show your Work.
Or,
B) State whether the following statements are true and false. Give reasons
i) As the value of \sin increases, the value of \tan decreases.
ii) When the value of \sin is maximum, the value of cosec is also maximum. $0^{\circ} \ll 90^{\circ}$
25. A) A cow is tied at one of the corners of a square shed. The length of the rope is 22 m . The cow can only eat the grass outside the shed as shown below.
What is the area that the cow can graze on? Show your steps.

B) The perimeter of a sector of a circle of radius 5.2 cm is 16.4 cm . Find the area of the sector.

SECTION-C

26. Find all pairs of positive integers whose sum is 91 and HCF is 13 . Show your Work.
27. If one root of the quadratic equation $3 x^{2}+p x+4=0$ is $\stackrel{2}{3}_{3}$, then find the value of p and the other root of the equation.
28. A) The two circles represent the ordered pairs, (a,b), which aresefthons of respections. The circles are divided into 3 regions P, Q and R as shown.
Write one ordered pair each belonging to P, Q, and R. sh

Or,
B) Shown below is a pair of linear equations,
$\mathrm{x}+0.999 \mathrm{y}=2.999$
$0.999 x+y=2.998$
i) without finding the values of x and y, prove that $x-y=1$.
ii) find the values of x and y. Show your work.
29. A) Given below is the diagram of pair of pulleys. The length of AC is 12 cm .
In the given Figure, $\angle \mathrm{CAB}=20^{\circ}$. What is the measure of $\angle A O C$?

Or,
B) In given figure, two circle touch each other at the point C. Prothat the qommon tangent to the circles at C, bisects the common tangent at P and Q .

30. Prove that:

31. Arti owns a manufacturing company. She hires 5 supervisors and 20 operators of a 6 -months project. The table given below shows their salary breakup.

position	Salary for the two months	Salary for the remaining months
Supervisor	Between rs 18,000 to rs 20,000	Between rs 22,000 to rs 25,000
operator	Between rs 8,000 to rs 10,000	Between rs 13,000 to rs 15,000

The mean salary of five supervisors for the first two months is rupees 19,000 .
The salary of three supervisors are rupees 18,000 , rupees 18,500 , and rupees 20,000 respectively. Find the sum of other two supervisor's salary for first two months.

SECTION-D

32. A) The difference of the squares of two numbers is 180 . The square of the smaller number is 8 times the greater number. Find the two numbers.
B) A shopkeeper buy certain number of books in rupees 80 . If he buy 4 more books then new cost price of each book is reduced by rupees 1 . Find the number of books initially he buy.
33. A) In a rain water harvesting system, the rain water from a roof $22 \mathrm{~m} \times 20 \mathrm{~m}$ drains into a cylindrical tank having diameter of base 2 m and height 3.5 m . If the tank is full, find the rainfall in cm . Write your views on water conservation.
B) Rohan wants to renovate his room. He calls an architect for this work to measure the room. The length, breadth and height of a room are $8 \mathrm{~m} 50 \mathrm{~cm} ; 6 \mathrm{~m} 25 \mathrm{~cm}$ and 4 m 75 cm respectively. He wants to put the longest rod that can measure the dimensions of the room exactly.
34. In $\Delta \mathrm{ABC}, \mathrm{AD}$ is a median and O is any point on AD . BO and CO on producing meet AC and AB at E and F respectively. Now AD is produced to X such that $\mathrm{OD}=\mathrm{DX}$ as shown in figure. Prove that:
i) $\quad \mathrm{EF} \| \mathrm{BC}$
ii) $\mathrm{AO}: \mathrm{AX}=\mathrm{AF}: \mathrm{AB}$

35. The first term of an A.P is 3 , the last term is 83 and the sum of all its term is 903 . Find the number of terms and the common difference of the A.P.

SECTION - E

36. Read the passage below and answer the question that follows:

Varun has been selected by his school to design logo for sports day T-shirts for students and staff. The logo is designed in different geometrical shapes and different colours according to the theme. In given figure, a circle with centre O is inscribed in a $\Delta \mathrm{ABC}$, such that it touches the sides AB, BC, and CA at points D, E and F respectively. The lengths of sides AB, BC and CA are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively.

i) Find the length of AD and BE .

Or,
If the radius of the circle is 4 cm , find the area of $\triangle \mathrm{OAB}$.
ii) Find the perimeter of $\triangle \mathrm{ABC}$.
iii) Find the length of CF .
37. Read the following text and answer the following questions:

Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter's school and then reaches the office.

If the house is situated at $(2,4)$, bank at $(5,8)$, school at $(13,14)$ and office at $(13,26)$ and co-ordinates are in km.
i) What is the distance between house and bank?
ii) What is the distance daughter's school and office?
iii) What is the extra distance travelled by Ayush?
38. Read the following text and answer the questions that follow:

An aeroplane is a vehichle with wings and one or more engines that enables it to fly through the air. Most people think about inventors of aeroplane was wrights brothers. We have discussed about an aeroplane as following:
An aeroplane at an altitude of 300 metres observes the angle of depression of opposite points on the two banks of a river to be 45° and 60°.
(use $\bar{J}=1.732$)
i) $\sqrt{ }$ Find the value of y.
ii) Find the value of x.

Or,
iii) Find the distance PB . iv) Find the width AB of the river.

